Friday, 14 December 2018

Invariance



Invariance en linguistique.

« Chacun des articles composant ce numéro double s’attache à déployer une facette d’un programme de recherche qui s’est développé autour du travail d’Antoine Culioli pour étudier les formes linguistiques au travers de leurs variations. L’une des caractéristiques de ce travail est ce parti-pris de placer les faits de variation au centre de l’étude des langues et de considérer que l’identité des entités langagières en général réside dans le détail de leur variation, dans ce qui constitue le contour de cette variation et dans ce qui l’organise. Sur ce parti-pris s’appuie le concept d’invariant : les entités langagières prises dans ces variations forment des invariants. Contrairement à ce que pourrait laisser penser le préfixe négatif in, ces invariants s’entendent moins comme une négation de la variation en question, que comme ce qui se retrouve d’une variation à l’autre ; en quelque sorte, l’invariant intègre toutes les variantes ; le décrire suppose de décrire les variations auxquelles il est soumis.
Le concept d’invariant est paradoxal, mais le programme associé est relativement simple : étant donné des formes linguistiques, il s’agit d’observer comment ces formes varient d’un emploi à l’autre – comment elles changent de valeur, comment leur distribution change (distribution syntaxique, mais aussi genre de texte, registre, type d’usage), et aussi comment elles s’échangent avec d’autres (comment elles commutent), puisque c’est bien l’une de leurs façons de varier. On observe ces données empiriques que constituent les variations auxquelles sont soumises les formes linguistiques, et on considère qu’elles sont ce qui fait l’identité de ces formes et donc ce qu’il faut décrire pour arriver à restituer cette identité dans ce qu’elle a de singulier. »
 \( https://journals.openedition.org/linx/1562\#ftn1 \)

En Anthropologie structurale.

La transformation en analyse structurale est définie comme une variation structuralement déterminée (non aléatoire) de configuration d'un phénomène collectif donné, qu'il s'agisse d'une langue, d'un récit collectif comme un mythe, de relations de parenté ou encore de rites religieux ou sacrés. Par exemple, les variantes d'un phénomène entre des peuples voisins constituent autant de transformations de ce phénomène, et ces transformations sont structuralement liées (selon une logique propre) aux différences locales entre ces peuples, chacun produisant une variante du phénomène considéré en fonction de sa propre structure sociale.
\( https://fr.wikipedia.org/wiki/Transformation_(anthropologie_structurale) \)
peuples \( \rightarrow \) (foncteur) mythe / relation de parenté / …

Apprentissage fonctoriel.

L’approche classique consiste à disposer d’une data \( d \) et d’un ‘modèle’ (paramétré) \( m \) que l’on fit sur \( d \). En l’absence d’information, ce fit est ‘gratuit’ : rien ne permet d’en apprécier la pertinence, i.e. sa capacité à généraliser. En principe, on inclut l’hypothèse que \( d \) est représentatif pour justifier la procédure. On sait que ce résonnement est fallacieux : par exemple l’observation d’une série temporelle financière  sans fat tail \( x_0 \)  n’est généralement pas représentative. Une parade peut constituer à plonger cette série dans un ensemble plus vaste, avec l’idée que cet ensemble n’est pas exactement statistiquement homogène, mais que le ‘passage’ de la série \( x_0 \) à une série \( x_1 \) correspond à certaines réalités connues qui doivent se ‘réfléchir’ dans les `propriétés' du modèle : si celles-ci ne sont pas validées, l’emploi du modèle dans ce contexte doit être révisé. Il est fondamentalement surprenant de ne pas exploiter cette métaheuristique, qui certes suppose de fournir , outre \( d \), \(d_1,d_2,… \): un talent très humain ? CF le \textit{data grocissement} in Learning fallacy II.
Plus précisément on est ainsi amené à modéliser \( m \) comme un foncteur \( H : D \rightarrow \Omega \), et à jauger de sa pertinence en plongeant \( d \) dans une catégorie \( D \)  avec \( D_0  = d \) et \( D_i \xrightarrow{f} D_j \) (symétrie connue) et en vérifiant qu'on a bien fonctoriellement dans \( \Omega \) \(o_i  \xrightarrow{H(f)}  o_j \), avec \( o_i = H(D_i) \)  et \( o_j = H(D_j ) \) .
\( H \)  peut dépendre de \( D \) : on cherche un \( H \) tel qu’on sache quelque chose sur \( H(f) \).
Dans un contexte informationnel d’étiquettes (features, variables aléatoires) : on a un schéma \( X_z \rightarrow o_z \), où \( X \) est une (famille de) feature(s) et \( z \) est une feature vue comme un paramétrage de conditionnement – feature ou temps, et \( o \) un (ensemble de) mesure(s) statistique(s) ; on observe  les variations selon \(z\) de \(o\).\\
Cas élémentaire : supposant donnée une variable à expliquer \( Y\)  et un ensemble de variables explicatives \( X_i \) , \( z \) correspond à faire varier  (i.e. à regarder) \( Y \) dans le contexte \( X_i \)  :  \( \{ X_i \} \xrightarrow{H} \{ cor ( Y, X_i ) \} \), étant supposé qu'on a des flèches entre les \( \{ X_i \} \), qui induisent fonctoriellement des flèches entre les \( \{ cor ( Y, X_i ) \} \).

Supposons qu'on a dans  \( D \) deux classes dont on notera \( \rightarrow \) (resp. \( \vdash \) ) les morphismes intraclasses (resp. extraclasses), et que deux résultats de mesures seulement sont possibles, \( o \) et \( -o \) : on attend par exemple que si \( D_i \rightarrow D_j \), \( H(D_i) = H(D_j)=o \), et si \( D_i \vdash D_j \), \( H(D_i) = o, \space H(D_j)=-o \), simplement parce qu'on attend \( H( \rightarrow ) = id\) et \( H(\vdash) = g\) avec \( o \xrightarrow{g} -o \). Si \( H \) correspont à une mesure opérée par un système faillible, le fait de ne pas observer le résultat attendu peut amener à : douter de la mesure \( H(D_j) \), ou ... du modèle \( H \) !
Une théorie physique se jauge à sa capacité prédictive, soit son pouvoir de généralisation : on part de \( D_0  = d \) et de l'observation \( H(D_0) \), on échafaude une théorie  \( H \), qui porte à la fois sur les relations des relations dans  \( D \) avec les relations de mesures dans  \( \Omega \)  et sur les `mesures' que  \( H \) explicite. Une prédiction consiste à prendre un  \( D_i \) et à exploiter les flèches \( D_k \xrightarrow{f}  D_i \) des  \( D_k \) supposés connus vers cet objet pour prédire la mesure \( H(D_i) \), via \( H(D_k) \xrightarrow{H(f)} H(D_i) \).



No comments:

Post a Comment